Selasa, 01 Maret 2011

biokimia

MATA KULIAH : UTS BIOKIMIA

TANGGAL/HARI : 19 NOVEMBER 2010

DOSEN : Dr ASIH SURYANINGSIH,M.Si

NAMA : LIA DEWI SRI YANTI

NIM : 207202268

JURUSAN : PENDIDIKAN KIMIA

PERTANYAAN

1. Jelaskan hubungan keterkaitan antara karbohidrat, protein, lemak, vitamin dan serat terhadap kehidupan?

2. Jelaskan klasifikasi karbihidrat disertai contoh selengkap mungkin?

3. Jelaskan sifat-sifat fisika serta kimia asam lemak dan lemak?

4. Jelaskan mengapa peranan enzim penting keberadaannya bagi tubuh manusia, dan berikan contohnya?

5. Jelaskan bagaiman fungsi dan cara kerja enzim serta factor-faktor apa saja yang mempengaruhi kerjanya?

6. Jelaskan hubungan antara vitamin dan koenzim dan berikan contohnya?

7. Jelaskan bagaimana perbedaan struktur primer, sekunder, tersier dan kuartener?

JAWABAN

1. Hubungan keterkaitan antara karbohidrat, protein, lemak, vitamin dan serat terhadap kehidupan yaitu sangat berhubungan karena karbohidrat, lemak, protein , vitamin dan serat saling melengkapi jika salah satunya tidak lengkap maka tubuh akan mengalami ketidak keseimbangan yang bisa membuat tubuh sakit akibat kekurangan salah satunya. Contoh Serat baik untuk menurunkan kadar kolesterol dan mencegah konstipasi karena menyerap air ketika melewati saluran pencernaan, sehingga tekstur feses menjadi lunak. Agar terbebas dari masalah sembelit, konsumsi serat harus diimbangi dengan asupan air yang cukup. Jika kurang minum, serat akan memperparah sembelit atau gangguan pada usus besar[1].

2. Klasifikasi karbohidrat

Kata karbohidrat berasal dari kata karbon dan air dan karbohidrat adalah senyawa organik terdiri dari unsur karbon, hidrogen, dan oksigen. contoh; glukosa C6H12O6, sukrosa C12H22O11, sellulosa (C6H10O5)n. Karena komposisi yang demikian, senyawa ini pernah disangka sebagai hidrat karbon, tetapi sejak 1880, senyawa tersebut bukan hidrat dari karbon. Nama lain dari karbohidrat adalah sakarida, berasal dari bahasa Arab "sakkar" artinya gula. Karbohidrat sederhana mempunyai rasa manis sehingga dikaitkan dengan gula. Melihat struktur molekulnya, karbohidrat lebih tepat didefinisikan sebagai suatu polihidroksialdehid atau polihidroksiketon. Contoh glukosa; adalah suatu polihidroksi aldehid karena mempunyai satu gugus aldehid da 5 gugus hidroksil (OH).[2]

Fungsi karbohidrat

Fungsi primer dari karbohidrat adalah sebagai cadangan energi jangka pendek (gula merupakan sumber energi). Fungsi sekunder dari karbohidrat adalah sebagai cadangan energi jangka menengah (pati untuk tumbuhan dan glikogen untuk hewan dan manusia). Fungsi lainnya adalah sebagai komponen struktural sel.

Klasifikasi karbohidrat

Karbohidrat dapat dikelompokkan menurut jumlah unit gula, ukuran dari rantai karbon, lokasi gugus karbonil (-C=O), serta stereokimia.

Berdasarkan jumlah unit gula dalam rantai, karbohidrat digolongkan menjadi 4 golongan utama yaitu:

1. Monosakarida (terdiri atas 1 unit gula)

2. Disakarida (terdiri atas 2 unit gula)

3. Oligosakarida (terdiri atas 3-10 unit gula)

4. Polisakarida (terdiri atas lebih dari 10 unit gula)

Pembentukan rantai karbohidrat menggunakan ikatan glikosida.

Berdasarkan lokasi gugus –C=O, monosakarida digolongkan menjadi 2 yaitu:

1. Aldosa (berupa aldehid)

2. Ketosa (berupa keton)

Klasifikasi karbohidrat menurut lokasi gugus karbonil

Berdasarkan jumlah atom C pada rantai, monosakarida digolongkan menjadi:

1. Triosa (tersusun atas 3 atom C)

2. Tetrosa (tersusun atas 4 atom C)

3. Pentosa (tersusun atas 5 atom C)

4. Heksosa (tersusun atas 6 atom C)

5. Heptosa (tersusun atas 7 atom C)

6. Oktosa (tersusun atas 3 atom C)

Klasifikasi karbohidrat menurut jumlah atom C

Contoh monosakarida

Contoh pertama di atas (sebelah kiri) menunjukkan sebuah monosakarida triosa (memiliki 3 atom C), aldosa (berstruktur aldehid/-COH) sehingga dinamakan gula aldotriosa. Sedangkan contoh kedua (sebelah kanan) menunjukkan sebuah monosakarida heksosa (memiliki 6 atom C), ketosa (berstruktur keton/R-CO-R) sehingga dinamakan gula ketoheksosa.

Berdasarkan stereokimia, monosakarida terbagi menjadi beberapa golongan. Stereokimia adalah studi mengenai susunan spasial dari molekul. Salah satu bagian dari stereokimia adalah stereoisomer. Stereoisomer mengandung pengertian:

1. memiliki kesamaan order dan jenis ikatan

2. memiliki perbedaan susunan spasial

3. memiliki perbedaan properti (sifat).

Enantiomer merupakan pasangan dari stereoisomer. Dalam hal ini terdapat aturan yaitu:

1. Diberi awalan D dan L

2. Keduanya merupakan gambar cermin yang tak mungkin saling tumpang tindih

Gambar-gambar berikut memberikan penjelasan mengenai perbedaan susunan spasial dalam enatiomer.

Ilustrasi untuk enantiomer (perhatikan perbedaan susunan spasial yang ada)

Contoh enantiomer dari gula triosa (perhatikan perbedaan susunan spasial yang ada)

Monosakarida-monosakarida penting

Beberapa monosakarida penting bagi tubuh kita di antaranya adalah D-gliseraldehid, D-glukosa, D-fruktosa, D-galaktosa serta D-ribosa.

1. D-gliseraldehid (karbohidrat paling sederhana)

Karbohidrat ini hanya memiliki 3 atom C (triosa), berupa aldehid (aldosa) sehingga dinamakan aldotriosa.

D-gliseraldehid (perhatikan bahwa gula ini hanya memiliki 3 atom C sehingga disebut paling sederhana)

2. D-glukosa (karbohidrat terpenting dalam diet)

Glukosa merupakan aldoheksosa, yang sering kita sebut sebagai dekstrosa, gula anggur ataupun gula darah. Gula ini terbanyak ditemukan di alam.

D-glukosa (perhatikan bahwa glukosa mengalami siklisasi membentuk struktur cincin)

3. D-fruktosa (termanis dari semua gula)

Gula ini berbeda dengan gula yang lain karena merupakan ketoheksosa.

D-fruktosa (perhatikan bahwa fruktosa mengalami siklisasi membentuk struktur cincin)

4. D-galaktosa (bagian dari susu)

Gula ini tidak ditemukan tersendiri pada sistem biologis, namun merupakan bagian dari disakarida laktosa.

D-galaktosa (perhatikan bahwa galaktosa mengalami siklisasi membentuk struktur cincin)

Perbedaan pokok antara D-glukosa dan D-galaktosa (perhatikan daerah berarsis lingkaran)

5. D-ribosa (digunakan dalam pembentukan RNA)

Karena merupakan penyusun kerangka RNA maka ribosa penting artinya bagi genetika bukan merupakan sumber energi. Jika atom C nomor 2 dari ribosa kehilangan atom O, maka akan menjadi deoksiribosa yang merupakan penyusuna kerangka DNA.[3]

D-ribosa (perhatikan gula ini memiliki 5 atom C)

Sifat-sifat monosakarida

1. semua monosakarida zat padat putih, mudah larut dalam air.

2. larutannya bersifat optis aktif.

  1. larutan monosakarida yg baru dibuat mengalami perubahan sudut putaran disebut mutarrotasi.

4. contoh larutan alfaglukosa yang baru dibuat mempunyai putaran jenis + 113` akhirnya tetap pada + 52,7`.

5. umumnya disakarida memperlihatkan mutarrotasi, tetapi polisakarida tidak.

6. semua monosakarida merupakan reduktor sehingga disebut gula pereduksi.

Identifikasi monosakarida

1. uji umum utk karbohidrat adalah uji Molisch. bila larutan karbohidrat diberi beberapa tetes larutan alfa-naftol, kemudian H2SO4 pekat secukupnya sehingga terbentuk 2 lapisan cairan, pada bidang batas kedua lapisan itu terbentuk cincin ungu.

2. gula pereduksi yaitu monosakarida dan disakarida kecuali sukrosa dapat ditunjukkan dg pereaksi Fehling atau Bennedict. Gula pereduksi bereaksi dg pereaksi Fehling atau Benedict menghasilkan endapan merah bata (Cu2O). Selain Pereaksi Benedict dan Fehling, gula pereduksi juga bereaksi positif dg pereaksi Tollens.

3. reaksi Seliwanoff (khusus menunjukkan adanya fruktosa). Pereaksi seliwanoff terdiri dari serbuk resorsinol + HCl encer. Bila fruktosa diberi pereaksi seliwanoff dan dipanaskan dlm air mendidih selama 10 menit akan terjadi perubahan warna menjadi lebih tua.[4]

O O

║ ║

C H C OH

│ │

(CHOH)4 + 2CUO (CHOH)4 + CU2O↓

│ Fehling │ cermin tembaga

CH2OH CH2OH

Glukosa as. Glukonat

Disakarida-disakarida penting

Beberapa disakarida penting bagi tubuh kita di antaranya adalah β-maltosa, β-laktosa serta sukrosa.

Disakarida dan oligosakarida

Disakarida merupakan karbohidrat yang terbentuk dari dua molekul monosakarida yang berikatan melalui gugus -OH dengan melepaskan molekul air. Contoh dari disakarida adalah sukrosa, laktosa, dan maltosa.

1. β-maltosa

Disakarida ini tak ditemukan di alam kecuali pada kecambah padi-padian. Maltosa merupakan gabungan dari 2 molekul glukosa.

β-maltosa (ikatan antara kedua monosakarida merupakan ikatan C1-4. Atom C nomor 1 yang tak berikatan dengan glukosa lain dalam posisi beta)

2. β-laktosa

Laktosa sering disebut sebagai gula susu. Disakarida ini tersusun atas glukosa dan galaktosa. Kita tidak dapat menggunakan galaktosa secara langsung, tetapi harus diubah menjadi glukosa.

β-laktosa (ikatan antara kedua monosakarida merupakan ikatan C1-4)

3. Sukrosa

Sukrosa merupakan gula terbanyak yang bisa didapatkan dari tumbuhan. Tumbuhan yang banyak dimanfaatkan karena kandungan sukrosa adalah tebu dan bit.

Sukrosa (berbeda dengan maltosa dan laktosa, ikatan yang menghubungkan kedua monosakarida adalah ikatan C1-2)

Polisakarida-polisakarida penting

Beberapa polisakarida penting bagi tubuh kita di antaranya adalah amilum (pati), glikogen dan selulosa.

Polisakarida

Polisakarida merupakan karbohidrat yang terbentuk dari banyak sakarida sebagai monomernya. Rumus umum polisakarida yaitu C6(H10O5)n. Contoh polisakarida adalah selulosa, glikogen, dan amilum.[5]

1. Amilum

Pati merupakan polisakarida yang berfungsi sebagai cadangan energi bagi tumbuhan. Pati merupakan polimer α-D-glukosa dengan ikatan α (1-4). Kandungan glukosa pada pati bisa mencapai 4000 unit. Ada 2 macam amilum yaitu amilosa (pati berpolimer lurus) dan amilopektin (pati berpolimer bercabang-cabang). Sebagian besar pati merupakan amilopektin.

Struktur amilosa (perhatikan bahwa amilosa tidak bercabang)

Struktur amilopektin (bandingkan dengan amilosa)

2. Glikogen

Glikogen merupakan polimer glukosa dengan ikatan α (1-6). Polisakarida ini merupakan cadangan energi pada hewan dan manusia yang disimpan di hati dan otot sebagai granula. Glikogen serupa dengan amilopektin.

Struktur glikogen (bandingkan dengan amilum)

3. Selulosa

Selulosa tersusun atas rantai glukosa dengan ikatan β (1-4). Selulosa lazim disebut sebagai serat dan merupakan polisakarida terbanyak.

Struktur selulosa yang merupakan polimer dari glukosa (bandingkan dengan pati)

Karbohidrat-karbohidrat lain

Beberapa karbohidrat bergabung dengan komponen lain. Sebagai contoh adalah mukopolisakarida, suatu materi tipis, kental, menyerupai jelly dan melapisi sel.

Stuktur dari mukopolisakarida

Contoh yang lain adalah glikoprotein, suatu protein yang mengikat unit karbohidrat dengan ikatan kovalen. Struktur ini memainkan beberapa peran penting di antaranya dalam proses proteksi imunologis, pembekuan darah, pengenalan sel-sel, serta interaksi dengan bahan kimia lain.[6]

Glikoprotein

3. Sifat-sifat fisika serta kimia asam lemak dan lemak

Asam lemak adalah asam organik yang terdapat sebagai ester trigliserida atau lemak, baik yang berasl dari hewan atau tumbuhan.

Sifat fisika: asam lemak jenuh mempunyai rantai karbon pendek, yaitu asam butirat dan kaproat mempunyai titik lebur yang rendah.

Sifat kimia: asam lemak adalah asam lemah. Apabila dapat larut dalam air molekul asam lemak akan terionisasi sebagian dan melepaskan ion H+. Asamlemak jenuh mudah mengadakan reaksi pada ikatan rangkapnya. Karena adanya ikatan rangkap, maka asam lemak tidak jenuh dapt mengalami oksidasi yang mengakibatkan putusnya C=Cdan terbentuknya gugus –COOH.

Lemak disini ialah suatu ester asam lemak dengan gliserol. Gliserol ialah suatu trihidroksi alkohol yang terdiri atas tiga atom karbon. Jadi tiap atom karbonmempunyai gugus –OH.

Sifat fisika: lemak hewan pada umumnya berupa zat padat pada suhu ruangan, sedangkan lemak yang berasal dari tumbuhan berupa zat cair. Lemak yang mempunyai titik lebur tinggi mengandung asam lemak jenuh, sedangkan lemak cair atau yang biasa disebut minyak mengandung asam lemak tidak jenuh.

Sifat kimia: lemak atau gliserida asam lemak pendek dapat larut dalm air,sedangkan gliserida asam lemak panjang tidak larut. Semua gliserida larut dalam ester, kloroform atau benzena. Alkohol panas adalah pelarut lemak yang baik.[7]

4. Peranan enzim penting keberadaannya bagi tubuh manusia, dan berikan contohnya

Model komputer enzim purina nukleosida fosforilase (PNPase)

Enzim adalah biomolekul berupa protein yang berfungsi sebagai katalis (senyawa yang mempercepat proses reaksi tanpa habis bereaksi) dalam suatu reaksi kimia organik.[1][2] Molekul awal yang disebut substrat akan dipercepat perubahannya menjadi molekul lain yang disebut produk. Jenis produk yang akan dihasilkan bergantung pada suatu kondisi/zat, yang disebut promoter. Semua proses biologis sel memerlukan enzim agar dapat berlangsung dengan cukup cepat dalam suatu arah lintasan metabolisme yang ditentukan oleh hormon sebagai promoter.

Enzim bekerja dengan cara bereaksi dengan molekul substrat untuk menghasilkan senyawa intermediat melalui suatu reaksi kimia organik yang membutuhkan energi aktivasi lebih rendah, sehingga percepatan reaksi kimia terjadi karena reaksi kimia dengan energi aktivasi lebih tinggi membutuhkan waktu lebih lama. Sebagai contoh:

X + C → XC (1)

Y + XC → XYC (2)

XYCCZ (3)

CZ → C + Z (4)

Meskipun senyawa katalis dapat berubah pada reaksi awal, pada reaksi akhir molekul katalis akan kembali ke bentuk semula.

Sebagian besar enzim bekerja secara khas, yang artinya setiap jenis enzim hanya dapat bekerja pada satu macam senyawa atau reaksi kimia. Hal ini disebabkan perbedaan struktur kimia tiap enzim yang bersifat tetap. Sebagai contoh, enzim α-amilase hanya dapat digunakan pada proses perombakan pati menjadi glukosa.

5. Fungsi dan cara kerja enzim serta faktor-faktor apa saja yang mempengaruhi kerjanya yaitu

Mekanisme

Enzim dapat bekerja dengan beberapa cara, yang kesemuaannya menurunkan ΔG:

* Menurunkan energi aktivasi dengan menciptakan suatu lingkungan yang mana keadaan transisi terstabilisasi (contohnya mengubah bentuk substrat menjadi konformasi keadaan transisi ketika ia terikat dengan enzim.)

* Menurunkan energi keadaan transisi tanpa mengubah bentuk substrat dengan menciptakan lingkungan yang memiliki distribusi muatan yang berlawanan dengan keadaan transisi.

* Menyediakan lintasan reaksi alternatif. Contohnya bereaksi dengan substrat sementara waktu untuk membentuk kompleks Enzim-Substrat antara.

* Menurunkan perubahan entropi reaksi dengan menggiring substrat bersama pada orientasi yang tepat untuk bereaksi. Menariknya, efek entropi ini melibatkan destabilisasi keadaan dasar, dan kontribusinya terhadap katalis relatif kecil.

Stabilisasi keadaan transisi

Pemahaman asal usul penurunan ΔG memerlukan pengetahuan bagaimana enzim dapat menghasilkan keadaan transisi reaksi yang lebih stabil dibandingkan dengan stabilitas keadaan transisi reaksi tanpa katalis. Cara yang paling efektif untuk mencapai stabilisasi yang besar adalah menggunakan efek elektrostatik, terutama pada lingkungan yang relatif polar yang diorientasikan ke distribusi muatan keadaan transisi. Lingkungan seperti ini tidak ada dapat ditemukan pada reaksi tanpa katalis di air.

Dinamika dan fungsi

Dinamika internal enzim berhubungan dengan mekanisme katalis enzim tersebut. Dinamika internal enzim adalah pergerakan bahagian struktur enzim, misalnya residu asam amino tunggal, sekelompok asam amino, ataupun bahwa keseluruhan domain protein. Pergerakan ini terjadi pada skala waktu yang bervariasi, berkisar dari beberapa femtodetik sampai dengan beberapa detik. Jaringan residu protein di seluruh struktur enzim dapat berkontribusi terhadap katalisis melalui gerak dinamik. Gerakan protein sangat vital, namun apakah vibrasi yang cepat atau lambat maupun pergerakan konformasi yang besar atau kecil yang lebih penting bergantung pada tipe reaksi yang terlibat. Namun, walaupun gerak ini sangat penting dalam hal pengikatan dan pelepasan substrat dan produk, adalah tidak jelas jika gerak ini membantu mempercepat langkah-langkah reaksi reaksi enzimatik ini. Penyingkapan ini juga memiliki implikasi yang luas dalam pemahaman efek alosterik dan pengembangan obat baru.

Fungsi biologis

Enzim mempunyai berbagai fungsi bioligis dalam tubuh organisme hidup. Enzim berperan dalam transduksi signal dan regulasi sel, seringkali melalui enzim kinase dan fosfatase. Enzim juga berperan dalam menghasilkan pergerakan tubuh, dengan miosin menghidrolisis ATP untuk menghasilkan kontraksi otot. ATPase lainnya dalam membran sel umumnya adalah pompa ion yang terlibat dalam transpor aktif. Enzim juga terlibat dalam fungs-fungsi yang khas, seperti lusiferase yang menghasilkan cahaya pada kunang-kunang. Virus juga mengandung enzim yang dapat menyerang sel, misalnya HIV integrase dan transkriptase balik.

Enzim lusiferase pada kunang-kunang memiliki kofaktor lusiferin (kuning-hijau) yang dapat memancarkan cahaya.

Salah satu fungsi penting enzim adalah pada sistem pencernaan hewan. Enzim seperti amilase dan protease memecah molekul yang besar (seperti pati dan protein) menjadi molekul yang kecil, sehingga dapat diserap oleh usus. Molekul pati, sebagai contohnya, terlalu besar untuk diserap oleh usus, namun enzim akan menghidrolisis rantai pati menjadi molekul kecil seperti maltosa, yang akan dihidrolisis lebih jauh menjadi glukosa, sehingga dapat diserap. Enzim-enzim yang berbeda, mencerna zat-zat makanan yang berbeda pula. Pada hewan pemamah biak, mikroorganisme dalam perut hewan tersebut menghasilkan enzim selulase yang dapat mengurai sel dinding selulosa tanaman.

Beberapa enzim dapat bekerja bersama dalam urutan tertentu, dan menghasilan lintasan metabolisme. Dalam lintasan metabolisme, satu enzim akan membawa produk enzim lainnya sebagai substrat. Setelah reaksi katalitik terjadi, produk kemudian dihantarkan ke enzim lainnya. Kadang-kadang lebih dari satu enzim dapat mengatalisasi reaksi yang sama secara bersamaan.

Enzim menentukan langkah-langkah apa saja yang terjadi dalam lintasan metabolisme ini. Tanpa enzim, metabolisme tidak akan berjalan melalui langkah yang teratur ataupun tidak akan berjalan dengan cukup cepat untuk memenuhi kebutuhan sel. Dan sebenarnya, lintasan metabolisme seperti glikolisis tidak akan dapat terjadi tanpa enzim. Glukosa, contohnya, dapat bereaksi secara langsung dengan ATP, dan menjadi terfosforliasi pada karbon-karbonnya secara acak. Tanpa keberadaan enzim, proses ini berjalan dengan sangat lambat. Namun, jika heksokinase ditambahkan, reaksi ini tetap berjalan, namun fosforilasi pada karbon 6 akan terjadi dengan sangat cepat, sedemikiannya produk glukosa-6-fosfat ditemukan sebagai produk utama. Oleh karena itu, jaringan lintasan metabolisme dalam tiap-tiap sel bergantung pada kumpulan enzim fungsional yang terdapat dalam sel tersebut.

Kontrol aktivitas

Terdapat lima cara utama aktivitas enzim dikontrol dalam sel.

1. Produksi enzim (transkripsi dan translasi gen enzim) dapat ditingkatkan atau diturunkan bergantung pada respon sel terhadap perubahan lingkungan. Bentuk regulase gen ini disebut induksi dan inhibisi enzim. Sebagai contohnya, bakteri dapat menjadi resistan terhadap antibiotik seperti penisilin karena enzim yang disebut beta-laktamase menginduksi hidrolisis cincin beta-laktam penisilin. Contoh lainnya adalah enzim dalam hati yang disebut sitokrom P450 oksidase yang penting dalam metabolisme obat. Induksi atau inhibisi enzim ini dapat mengakibatkan interaksi obat.

2. Enzim dapat dikompartemenkan, dengan lintasan metabolisme yang berbeda-beda yang terjadi dalam kompartemen sel yang berbeda. Sebagai contoh, asam lemak disintesis oleh sekelompok enzim dalam sitosol, retikulum endoplasma, dan aparat golgi, dan digunakan oleh sekelompok enzim lainnya sebagai sumber energi dalam mitokondria melalui β-oksidasi.

3. Enzim dapat diregulasi oleh inhibitor dan aktivator. Contohnya, produk akhir lintasan metabolisme seringkali merupakan inhibitor enzim pertama yang terlibat dalam lintasan metabolisme, sehingga ia dapat meregulasi jumlah produk akhir lintasan metabolisme tersebut. Mekanisme regulasi seperti ini disebut umpan balik negatif karena jumlah produk akhir diatur oleh konsentrasi produk itu sendiri. Mekanisme umpan balik negatif dapat secara efektif mengatur laju sintesis zat antara metabolit tergantung pada kebutuhan sel. Hal ini membantu alokasi bahan zat dan energi secara ekonomis dan menghindari pembuatan produk akhir yang berlebihan. Kontrol aksi enzimatik membantu menjaga homeostasis organisme hidup.

4. Enzim dapat diregulasi melalui modifikasi pasca-translasional. Ia dapat meliputi fosforilasi, miristoilasi, dan glikosilasi. Contohnya, sebagai respon terhadap insulin, fosforilasi banyak enzim termasuk glikogen sintase membantu mengontrol sintesis ataupun degradasi glikogen dan mengijinkan sel merespon terhadap perubahan kadar gula dalam darah.[64] Contoh lain modifikasi pasca-translasional adalah pembelahan rantai polipeptida. Kimotripsin yang merupakan protease pencernaan diproduksi dalam keadaan tidak aktif sebagai kimotripsinogen di pankreas. Ia kemudian ditranspor ke dalam perut di mana ia diaktivasi. Hal ini menghalangi enzim mencerna pankreas dan jaringan lainnya sebelum ia memasuki perut. Jenis prekursor tak aktif ini dikenal sebagai zimogen.

5. Beberapa enzim dapat menjadi aktif ketika berada pada lingkungan yang berbeda. Contohnya, hemaglutinin pada virus influenza menjadi aktif dikarenakan kondisi asam lingkungan. Hal ini terjadi ketika virus terbawa ke dalam sel inang dan memasuki lisosom.

Kerja enzim dipengaruhi oleh beberapa faktor, terutama adalah substrat, suhu, keasaman, kofaktor dan inhibitor. Tiap enzim memerlukan suhu dan pH (tingkat keasaman) optimum yang berbeda-beda karena enzim adalah protein, yang dapat mengalami perubahan bentuk jika suhu dan keasaman berubah. Di luar suhu atau pH yang sesuai, enzim tidak dapat bekerja secara optimal atau strukturnya akan mengalami kerusakan. Hal ini akan menyebabkan enzim kehilangan fungsinya sama sekali. Kerja enzim juga dipengaruhi oleh molekul lain. Inhibitor adalah molekul yang menurunkan aktivitas enzim, sedangkan aktivator adalah yang meningkatkan aktivitas enzim. Banyak obat dan racun adalah inihibitor enzim.

Diagram energi potensial reaksi kimia organik yang menunjukkan efek katalis pada suatu reaksi eksotermik hipotetis X + Y = Z.[8]

6. Hubungan antara vitamin dan koenzim dan berikan contohnya. Hubungannya terdapat pada niasin. Niasin adalah nama vitamin yang berupa molekul nokitinamida atau asam nikotinat. Niasin terdapat terdapat dalam jaringan hewan maupun tumbuhan. Daging adalah bahan makanan yang mengandung banyak niasin. Molekul nikotinamida terdapat sebagai baigian dari molekul NAD+ atau NADP+. Kekurangan niasin akan mengalami pelagra pada manusia. Koenzim NAD+ atau NADP+ dikenal sebagai koenzim untuk enzim dehidrogenase yang merupakan katalis pada reaksi oksidasi reduksi. [9]

Jumlah vitamin yang masuk ke tubuh bervariasi tergantung pada jenis vitamin itu, apakah vitamin larut dalam air atau vitamin yang larut dalam lemak. Jumlah vitamin yang larut air dalam makanan meningkat, demikian juga jumlah yang diekskresikan dalam urine; sehingga akumulasi vitamin jenis ini dalam tubuh menjadi terbatas.[10]

Koenzim

Model pengisian ruang koenzim NADH

Koenzim adalah kofaktor berupa molekul organik kecil yang mentranspor gugus kimia atau elektron dari satu enzim ke enzim lainnya. Contoh koenzim mencakup NADH, NADPH dan adenosina trifosfat. Gugus kimiawi yang dibawa mencakup ion hidrida (H) yang dibawa oleh NAD atau NADP+, gugus asetil yang dibawa oleh koenzim A, formil, metenil, ataupun gugus metil yang dibawa oleh asam folat, dan gugus metil yang dibawa oleh S-adenosilmetionina. Beberapa koenzim seperti riboflavin, tiamina, dan asam folat adalah vitamin.

Oleh karena koenzim secara kimiawi berubah oleh aksi enzim, adalah dapat dikatakan koenzim merupakan substrat yang khusus, ataupun substrat sekunder. Sebagai contoh, sekitar 700 enzim diketahui menggunakan koenzim NADH.

Regenerasi serta pemeliharaan konsentrasi koenzim terjadi dalam sel. Contohnya, NADPH diregenerasi melalui lintasan pentosa fosfat, dan S-adenosilmetionina melalui metionina adenosiltransferase.[11]

7. Perbedaan struktur primer, sekunder, tersier dan kuartener

Struktur protein dapat dilihat sebagai hirarki, yaitu berupa struktur primer (tingkat satu), sekunder (tingkat dua), tersier (tingkat tiga), dan kuartener (tingkat empat). Struktur primer protein merupakan urutan asam amino penyusun protein yang dihubungkan melalui ikatan peptida (amida). Sementara itu, struktur sekunder protein adalah struktur tiga dimensi lokal dari berbagai rangkaian asam amino pada protein yang distabilkan oleh ikatan hidrogen. Berbagai bentuk struktur sekunder misalnya ialah sebagai berikut:

· alpha helix (α-helix, "puntiran-alfa"), berupa pilinan rantai asam-asam amino berbentuk seperti spiral;

· beta-sheet (β-sheet, "lempeng-beta"), berupa lembaran-lembaran lebar yang tersusun dari sejumlah rantai asam amino yang saling terikat melalui ikatan hidrogen atau ikatan tiol (S-H);

· beta-turn, (β-turn, "lekukan-beta"); dan

· gamma-turn, (γ-turn, "lekukan-gamma").

Gabungan dari aneka ragam dari struktur sekunder akan menghasilkan struktur tiga dimensi yang dinamakan struktur tersier. Struktur tersier biasanya berupa gumpalan. Beberapa molekul protein dapat

analyzer, (2) analisis sekuens dari ujung-N dengan menggunakan degradasi Edman, (3) kombinasi dari digesti dengan tripsin dan spektrometri massa, dan (4) penentuan massa berinteraksi secara fisik tanpa ikatan kovalen membentuk oligomer yang stabil (misalnya dimer, trimer, atau kuartomer) dan membentuk struktur kuartener. Contoh struktur kuartener yang terkenal adalah enzim Rubisco dan insulin.

Struktur primer protein bisa ditentukan dengan beberapa metode: (1) hidrolisis protein dengan asam kuat (misalnya, 6N HCl) dan kemudian komposisi asam amino ditentukan dengan instrumen amino acid molekular dengan spektrometri massa.

Struktur sekunder bisa ditentukan dengan menggunakan spektroskopi circular dichroism (CD) dan Fourier Transform Infra Red (FTIR). Spektrum CD dari puntiran-alfa menunjukkan dua absorbans negatif pada 208 dan 220 nm dan lempeng-beta menunjukkan satu puncak negatif sekitar 210-216 nm. Estimasi dari komposisi struktur sekunder dari protein bisa dikalkulasi dari spektrum CD. Pada spektrum FTIR, pita amida-I dari puntiran-alfa berbeda dibandingkan dengan pita amida-I dari lempeng-beta. Jadi, komposisi struktur sekunder dari protein juga bisa diestimasi dari spektrum inframerah.

Struktur protein lainnya yang juga dikenal adalah domain. Struktur ini terdiri dari 40-350 asam amino. Protein sederhana umumnya hanya memiliki satu domain. Pada protein yang lebih kompleks, ada beberapa domain yang terlibat di dalamnya. Hubungan rantai polipeptida yang berperan di dalamnya akan menimbulkan sebuah fungsi baru berbeda dengan komponen penyusunnya. Bila struktur domain pada struktur kompleks ini berpisah, maka fungsi biologis masing-masing komponen domain penyusunnya tidak hilang. Inilah yang membedakan struktur domain dengan struktur kuartener. Pada struktur kuartener, setelah struktur kompleksnya berpisah, protein tersebut tidak fungsional.[12]


DAFTAR RUJUKAN

http://cybermed.cbn.net.id/cbprtl/cybermed/detail.aspx?x=Hot+Topic&y=cybermed|0|0|5|215

http://id.wikipedia.org/wiki/Enzim

http://kimiadahsyat.blogspot.com/2009/07/protein-dan-asam-amino.html

http://qforq.multiply.com/journal/item/2

http://www.google.co.id/url?sa=t&source=web&cd=10&ved=0CFYQFjAJ&url=http%3A%2F%2Fstatic.schoolrack.com%2Ffiles%2F14204%2F34772%2F4-metabolisme_karbohidrat.doc&rct=j&q=klasifikasi%20karbohidrat%20dan%20contohnya&ei=uILeTIDEEJC6ugOwsuzXDg&usg=AFQjCNHzGqaJMBWQWE1enQI4nQMxx2SoYw&cad=rja

http://www.madinastore.com/news/20/50-Zat-Yang-Diperlukan-Tubuh

http://yusuf-hilmi.blogspot.com/2009/06/klasifikasi-karbohidrat.html

Poedjiadi, Anna. 2005. dasar-dasar biokimia. Bandung: universitas indonesia press.



[7] Poedjiadi, Anna. 2005. dasar-dasar biokimia. Bandung: universitas indonesia press.

[9] Poedjiadi, Anna. 2005. dasar-dasar biokimia. Bandung: universitas indonesia press.

Tidak ada komentar:

Poskan Komentar